MINE $=$ GAP
 FOR MATHEMATICAL UNDERSTANDING
 THE BOOK AT-A-GLANE

TASK 4B: Danny knows $50 \times \frac{1}{2}=25$. Because of this, she knows that $50 \times \frac{1}{4}$ must be less. Do you agree with Danny? What do you think the new product might be? Use pictures, numbers, or words to explain your thinking.
Understanding how the size of factors impact products is critical for determining the reasonableness of our answers. It is likely that some, if not most or even all, of our students believe that multiplication yields a product larger than the first factor, but as we know, this isn't the case. In this task, our students are asked to describe why a product of a factor and $\frac{1}{4}$ will be less than the product of the same factor and $\frac{1}{2}$. Our students are likely to reason that it makes sense because $\frac{1}{4}$ is less than $\frac{1}{2}$. It will be interesting to see if they recognize that the product will be 12.5 (or exactly half of 25). Some students may complete the computation to justify their solution. This may not be indicative of the reasoning we are seeking in our students.

TASK 4C: Oscar noticed these two columns of equations on the board.

$50 \div \frac{1}{10}=500$	$50 \div \frac{2}{10}=250$
$40 \div \frac{1}{10}=400$	$40 \div \frac{2}{10}=200$
$30 \div \frac{1}{10}=300$	$30 \div \frac{2}{10}=150$
$20 \div \frac{1}{10}=200$	$20 \div \frac{2}{10}=100$

This task can be
\vdots
\vdots
modified to examine
patterns when
computing other
numbers. For example,
we could explore the
results of multiplying
by $\frac{1}{10}$ and $\frac{2}{10}$ by simply
changing the operation
in the prompt.

What patterns do you notice about the equations?
So how can knowing $80 \div \frac{1}{10}=800$ help you solve $80 \div \frac{2}{10}$?
Intentional arrangement of equations can help our students see patterns in computations. The quotients of the equations are provided so that students can focus on the relationships. We want our students to notice that the quotients of a number and $\frac{2}{10}$ are half of the quotient of the number and $\frac{1}{10}$. Though students may recognize the pattern, they may not be able to explain that they are dividing by twice as much so then the quotient will be half as much. The extension on the task is an opportunity to show that students can generalize their understanding.

Other Tasks sections provide three additional high-quality tasks related to each Big Idea, along with relevant explanations and analyses.

Modifying the Task marginal notes provide suggestions for further adaptation and exploration.

