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o you want to research something really interesting?

Let’s say you want to research something interesting and important, like 
why students drop out of school before completing their degree, why peo-
ple choose to use illicit drugs, what predicts whether an individual will die 
from a particular cause, whether a citizen will vote, or whether a consumer 
will purchase a particular type of product.

How would you do it? To be sure, researchers have been examining 
these types of outcomes for as long as curious people have been using 
scientific methods. But if they are not using logistic or probit regression (or 
similar procedure), odds1 are they are not getting the most from their data.

Throughout the book, I will use simple, intuitive examples from a 
range of disciplines to demonstrate important aspects of logistic regression. 
In addition, example data sets will be available on the book’s website so 
that readers can further enrich their logistic regression experience!

What is logistic regression, the oddly named and often underappreci-
ated type of regression that many researchers in the social sciences have 
rarely, if ever, heard of? Decades ago, I took statistics courses from people 

1Pun completely intended.
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2––BEST PRACTICES IN LOGISTIC REGRESSION

who I think were (or still are) some of the smartest and best teachers and 
scholars of statistics I have ever met. Despite having taken courses in 
regression models, ANOVA, multivariate statistics, hierarchical linear mod-
eling, structural equation modeling, and psychometrics, I found that logistic 
regression was not covered in psychology and many social sciences disci-
plines back then. Indeed, many of the classic, beloved textbooks I used as 
a graduate student and as an assistant professor (such as the fabulous texts 
on regression by Pedhazur and Cohen and Cohen, and the excellent mul-
tivariate text by Tabachnick and Fidel) failed to cover the issue back then.2 
Today most texts covering regression at the graduate level give at least a 
cursory introduction to the topic, and the latest revisions of the classic texts 
I mention above now also introduce readers to the topic.

In fact, had I not by quirk of fate ended up working as a statistician 
and research associate in a medical school for several years, taking epide-
miology courses and working with health science researchers, I would 
probably not have been exposed to logistic regression in any meaningful 
way. Logistic regression, I discovered, is widely used outside the particular 
niche of the social sciences I was trained in. Researchers in the health sci-
ences (medicine, health care, nursing, epidemiology, etc.) have been using 
logistic (and probit) regression and other precursors for a very long time. 
Unfortunately, because it is a quirky creature, researchers often avoid, mis-
use, or misinterpret the results of these analyses, even in top, peer-reviewed 
journals where logistic regression is common (Davies, Crombie, & Tavakoli, 
1998; Holcomb, Chaiworapongsa, Luke, & Burgdorf, 2001).

So why do we need a whole book dedicated to the exciting world of 
logistic regression when most texts cover the topic? It is a creature separate 
and unique unto itself, complex and maddening and amazingly valuable—
when done right. Just as many books focus on analysis of regression 
(ANOVA), ordinary least squares (OLS) regression, factor analysis, multivar-
iate statistics, structural equation modeling, hierarchical linear modeling, 
and the like, my years of experience using and teaching logistic regression 
to budding young social scientists leaves me believing this is a book that 
needs to be written. Logistic regression is different enough from OLS 
regression to warrant its own treatise. As you will see in coming chapters, 
while there are conceptual and procedural similarities between logistic and 

2Of course, that was a long time ago. We calculated statistics by scratching on clay 
tablets with styli by candlelight and walked uphill, in the snow, both ways to get to 
class. Well, the second part at least is true. It was Buffalo back before climate 
change . . . everything was covered with snow year-round and everything was, 
indeed, uphill no matter what direction you were going. Or so it seemed with the 
wind. But I digress. The point is that it was just a really long time ago. 
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Chapter 1  A Conceptual Introduction to Bivariate Logistic Regression––3

OLS regression, and to other procedures such as discriminant function anal-
ysis (DFA), the mathematics “under the hood” are different, the types of 
questions one can answer with logistic regression are a bit different, and 
there are interesting peculiarities in how one should interpret the results.

In other words, it is not the case that logistic regression is just multiple 
regression with a binary dependent variable. Well, yes, it is that, on the sur-
face, and conceptually. But it is much more. The more I use it, and the more 
I teach it, and the more I try to dig into what exactly those numbers mean 
and how to interpret them, the more I have discovered that this stuff can be 
seriously confusing, and complex, interesting, and powerful. And really fun.

To be clear, it is in no way just multiple (OLS) regression with a 
binary outcome. My goal in this book is to explore the fun things 
researchers can do with logistic regression, to explicate and simplify the 
confounding complexities of understanding what logistic regression is, 
and to provide evidence-based guidance as to what I think are best prac-
tices in performing logistic regression.

WHAT IS ORDINARY LEAST SQUARES REGRESSION AND  
 HOW IS LOGISTIC REGRESSION DIFFERENT? 

We will get into the mathematics of how logistic regression works in sub-
sequent chapters. Right now, there are a few conceptual similarities  
and differences that we can address to orient the reader who is not  
deeply familiar with the two types of analyses. First, let’s remember that 
OLS regression—what we will often call linear regression or multiple 
regression—is a solid and very useful statistical technique that I have fre-
quently used since the late 1980s. This contrasting is in no way attempting 
to set up logistic regression as superior to OLS regression (and certainly 
not vice versa). Just like I cannot say a hammer is a favored tool over a 
drill, I cannot give preference to one regression technique over another. 
They both serve different purposes, and they both belong in a hallowed 
place inside the researcher’s toolbox.

The primary conceptual difference between OLS and logistic regres-
sion is that in logistic regression, the types of questions we ask involve a 
dichotomous (or categorical) dependent variable (DV), such as whether a 
student received a diploma or not. In OLS regression, the DVs are 
assumed to be continuous in nature.3 Dichotomous DVs are an egregious 

3Although, in practice, measurement in OLS regression is not always strictly contin-
uous (or even interval).

©2015 SAGE Publications



4––BEST PRACTICES IN LOGISTIC REGRESSION

violation of the assumptions of OLS regression and therefore not appro-
priate. Without logistic regression, a researcher with a binary or categor-
ical outcome is left in a bit of a pickle. How is one to study the predictors 
of illness if in fact we cannot actually model how variables predict an 
illness?

Over the years, I have seen kludgy attempts such as using t-tests (or 
ANOVA) to explore where groups differ on multiple variables in an 
attempt to build theory or understanding. For example, one could look 
at differences between people who contract a disease and those who do 
not across variables such as age, race/ethnicity, education, body mass 
index (BMI), smoking and drinking habits, participation in various activ-
ities, and so on. Perhaps we would see a significant difference between 
the two groups in BMI and number of drinks per week on average. Does 
that mean we can assume that those variables might be causally related 
to having this illness? Definitely not, and further, it might also be the case 
that neither of these variables is really predictive of the illness at all. 
Being overweight and drinking a certain number of drinks might be 
related to living in a certain segment of society, which may in turn be 
related to health habits such as eating fresh fruits and vegetables (or not) 
and exercising, and stress levels, and commute times, and exposure to 
workplace toxins, which might in fact be related to the actual causes of 
the illness.

No disrespect to all those going before me who have done this exact 
type of analysis—historically, there were few other viable options (in addi-
tion, prior to large-scale statistical computing, logistic regression was prob-
ably too complex to be performed by the majority of researchers). But let’s 
think for a minute about this process. There are many drawbacks to the 
approach I just mentioned. One issue is that researchers can have issues 
with power if they adjust for Type I error rates that multiple univariate 
analyses require (or worse, they might fail to do so). In addition, using this 
group-differences approach, researchers cannot take into account how 
variables of interest covary. This issue is similar to performing an array of 
simple correlations rather than a multiple regression. To be sure, you can 
glean some insight into the various relationships among variables, but at 
the end of the day, it is difficult to figure out which variables are the stron-
gest or most important predictors of a phenomenon unless you model them 
in a multiple regression (or path analysis or structural equation modeling) 
type of environment.

Perhaps more troubling (to my mind) is the fact that this analytic strat-
egy prevents the examination of interactions, which are often the most 
interesting findings we can come across. Let us imagine that we find sex 
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Chapter 1  A Conceptual Introduction to Bivariate Logistic Regression––5

differences4 between those who graduate and those who do not, and differ-
ences in household income between those who graduate and those who do 
not. That might be interesting, but what if in reality there is an interaction 
between the sex of the student and family income in predicting graduation 
or dropout rates? What if boys are much more likely than girls to drop out 
in more affluent families, and girls are more likely to drop out in more 
impoverished families? That finding might have important policy and prac-
tice implications, but we are unable to test for that sort of interaction using 
the method of analysis described above. Logistic regression (like OLS regres-
sion) models variables in such a way that we get the unique effect of the 
variables, controlling for all other variables in the equation. Thus, we get a 
more sophisticated and nuanced look at what variables are uniquely predic-
tive (or related to) the outcome of interest.

I have also seen aggregation used as a strategy. Instead of looking at 
individual characteristics and individual outcomes, researchers might aggre-
gate to a classroom or school level. So then researchers might think they 
have a continuous variable (0–100% graduation rate for a school) as a 
function of the percent of boys or girls in a school and the average family 
income. In my opinion, this does tremendous disservice to the data, losing 
information and leading to potentially misleading results. In fact, it changes 
the question substantially from “what variables contribute to student com-
pletion” to “what school environment variables contribute to school com-
pletion rates.” Further, the predictor variables change from, say, sex of the 
student to percent of students who are male or female, and from race of 
student to percent of students who identify as a particular race, from family 
socioeconomic status (SES) to average SES within the school. These are 
fundamentally different variables, and, thus, analyses using these strategies 
answer a fundamentally different question. Furthermore, in my own explo-
rations, I have seen aggregation lead to wildly overestimated effect sizes—
double that of the appropriate analysis and more. Thus, aggregation 
changes the nature of the question, the nature of the variables, and can lead 
to inappropriate overestimation of effect sizes and variance accounted for.

4Readers may be more used to reading “gender differences” rather than “sex  
differences”—an example of American Psychological Association style and language 
use betraying the meaning of words—similar to the use of “negative reinforcement” 
as a synonym for punishment when in fact it is not at all. I will use the term “sex” 
in this book to refer to physical or biological sex—maleness or femaleness. Gender, 
conversely, refers to masculinity or femininity of behavior or psychology. The two 
concepts are not synonyms, and it does harm to the concepts to conflate them 
(Mead, 1935; Oakley, 1972). Please write your political leaders and urge them to 
take action to stop this injustice! 
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6––BEST PRACTICES IN LOGISTIC REGRESSION

I am sure some of you have also wondered why we cannot just compute 
an OLS regression equation with a binary outcome as the DV. This is a real 
procedure often discussed in older regression texts and is referred to as the 
linear probability model, but it is not the same as a probit model (which I will 
cover later). This would carry the advantages of being able to simultaneously 
estimate the unique effects of several independent variables (IVs) and examine 
relative importance in predicting the outcome, unlike the approach described 
above. In fact, the statistical software you use will perform this analysis if you 
tell it to. But there are issues with this approach. First, predicted scores (which 
are supposed to be predicted probabilities) can range outside the acceptable 
0.00–1.00 range. Second, residuals can only be 0, −1, or 1. Thus, they are neither 
normally distributed nor homoscedastic. In short, and without getting into too 
much detail, this simply is not an appropriate analysis (Cohen, Cohen, West, & 
Aiken, 2002). To illustrate this issue, I used a small subset of data from the 
National Education Longitudinal Study of 1988 (Ingels, 1994) to predict student 
completion (not dropping out) from some simple variables such as race, student 
grade point average, and student behavior problems. We will get back to this 
example data set later. For now, you can see in Figure 1.1 that performing this 
analysis in an OLS framework produced the expected violation of assumptions. 
For example, the residuals5 are not close to being normally distributed.

And thus, we come to conceptual similarities between OLS and logistic 
regression. Procedurally, both OLS and logistic regression are set up with a 
single DV and one or more IVs. Both allow us to simultaneously assess the 
unique effects of multiple predictor IVs (and their interactions or curvilinear 
components, if desired), and both allow examination of residuals for pur-
poses of screening data for outliers, follow-up analyses, or testing of 
assumptions. Both can perform simultaneous entry, hierarchical or block-
wise entry (groups of IVs entered at one time), and various stepwise pro-
cedures.6 And with both, we have the ability to assess a group of IVs to 

5What is a residual? A residual is many things to many people—an error of estimation, 
error variance, unexplained variance, the unique person effect, the distance from the 
regression line to the data point, Y − Ŷ . . . All this is to say that however you interpret 
it, functionally it is the difference between the predicted value for an individual—their 
score predicted by the regression line equation—and their actual score. 

6Many of you reading this will have been trained to have visceral negative reactions 
to stepwise procedures, which is ironic as just a generation earlier, they were heralded 
as important tools. I am of the mind that stepwise procedures have their place in the 
pantheon of statistical tools and that we should be knowledgeable of them and use 
them when appropriate. For most of you reading this, the answer to when these 
procedures are appropriate is “almost never.” Indeed, a full discussion of stepwise 
procedures is beyond the scope of this book, but interested readers can refer to stan-
dard references for regression such as Cohen et al. (2002) and Pedhazur (1997).
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Chapter 1  A Conceptual Introduction to Bivariate Logistic Regression––7

determine which predictor is the strongest unique predictor of a particular 
outcome and to answer many of the types of questions that have made 
regression a valuable tool in quantitative methods.

OLS Regression—A Deeper Conceptual Look

Why do we call regression “ordinary least squares regression”? The 
ordinary least squares part refers to both the goal of the procedure and 
how it is calculated—the estimation method. The goal for OLS regression 
is to fit a straight line to the bivariate (or multivariate) scatterplot such that 
the line fits the data in the best way possible. Obvious, right? We would 
rarely want our regression line to be an inferior or misleading fit. So we 
have a “line of best fit” that we use as a single descriptor of the entirety of 

Figure 1.1  Residuals From an OLS Analysis With Binary Outcome
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8––BEST PRACTICES IN LOGISTIC REGRESSION

the data we are analyzing. But how does that line get placed? Well, 
decades ago when statisticians and mathematicians were inventing this 
procedure, the obvious choice to them was to place the line such that the 
residuals were minimized. This goal of minimizing residuals—minimizing 
the distance between the data and the line of best fit—is intuitive and 
appealing in many ways. If assumptions are met and the line is fit well, 
most regression analyses will produce as many negative residuals as pos-
itive residuals (because as many data points will be below the line as 
above the line), and they generally sum to 0.00 or some value reasonably 
close. To get around this issue, statisticians use the simple step of squaring 
each residual and then summing them to get a positive value called the 
“sum of squares.” This removes the issue of negative and positive residuals 
and gets closer to the idea of raw distance, as −22 = 4 and 22 = 4. Research 
has shown that when assumptions are met in OLS regression that (a) the 
estimates produced are unbiased estimates of true regression properties 
within the population, (b) the standard errors decrease as sample size 
increases, and (c) they are efficient, meaning that no other method of 
estimation will produce smaller standard errors (if you are interested in 
more on the technicalities of OLS estimation, an excellent introduction is 
contained in Cohen et al., 2002).

Note particularly the phrase above “when assumptions are met.” Too 
often in research we do not know if assumptions have been met because 
authors do not report having tested them. In fact, I wrote an entire book 
on why cleaning data and testing assumptions is so important (Osborne, 
2012), and regression texts such as Cohen et al. (2002) clearly make the 
point that when assumptions are not met (e.g., the presence of even a sin-
gle extreme outlier), bad things can happen to analyses (see particularly 
Cohen et al., 2002, Chapter 10, or Osborne, 2012—a most excellent book, 
in my opinion). More on assumptions in a few paragraphs.

Maximum Likelihood  
Estimation—A Gentle but Deeper Look

Maximum likelihood estimation is one of those developments in statis-
tics that has spread primarily thanks to widespread access to statistical 
computing. Unlike OLS estimation, which is based on set equations that 
researchers or software can use to arrive at a calculated solution, maximum 
likelihood estimation is an iterative procedure. In other words, the software 
selects starting values for coefficients, calculates a solution, and compares 
it with a criterion. If the solution and the criterion are farther apart than 
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Chapter 1  A Conceptual Introduction to Bivariate Logistic Regression––9

desired, new values are attempted and a new solution is found. Again, the 
new solution is examined and if found lacking, again is adjusted and a third 
solution is attempted. Hopefully, with each iteration, the solution 
approaches the goals of the algorithm. At some point, the last iteration will 
be accepted as the final estimation of effects, and that is what the researcher 
will see in the output. You can imagine how computationally intensive this 
procedure is and why it was not widely used until computing power 
became widely available.

Without getting into too many technical details, the goal of maxi-
mum likelihood estimation (MLE) is to find a solution that provides 
intercepts and slopes for predictor variables that maximizes the likeli-
hood of individuals having scores on the dependent variable (Y) given 
their scores on the predictor variables (X1, X2, etc.). In other words, the 
algorithms are maximizing the likelihood that we would obtain the  
sample—the data, the observed scores—given the model and parame-
ters being estimated. We have observed scores on variables for individu-
als within the sample that arose from some real dynamic or relationship 
within the population. The MLE algorithm attempts to provide a model 
that maximizes the likelihood of producing the results observed. In 
essence, both OLS and MLE are attempting to summarize the observed 
data. The two procedures are merely using different mathematical tech-
niques to get to that goal.

Maximum likelihood estimation is, in my mind, similar to the some-
what counterintuitive notion of hypothesis testing and p values. The actual 
interpretation of a p value is the probability of obtaining the observed data 
if in fact the null hypothesis (H0) is true in the population.7 So conceptu-
ally, what MLE is trying to do is to estimate the various parameters (slopes 
and intercepts) that best model (or re-create) the observed data. Thus, if 
we have a population wherein the height of women and their shoe sizes 
are strongly positively related (as evidenced by the observed data), MLE 
will provide the coefficients and slopes that maximize the likelihood of 
obtaining the observed sample that contains the observed relationship 
between height and shoe size. MLE will repeatedly attempt estimations 
based on slightly different coefficients until the fit with the observed data 
is as good as can be—in other words, that successive iterations fail to 
improve the fit by an appreciable amount.

7It is not, contrary to popular belief, the probability of being wrong, the probability 
of getting the observed results by random chance, etc. It is also not exactly what 
we really want to test—which is the probability that our alternative hypothesis (Ha) 
is true. 
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10––BEST PRACTICES IN LOGISTIC REGRESSION

  DIFFERENCES AND SIMILARITIES IN ASSUMPTIONS 
BETWEEN OLS AND LOGISTIC REGRESSION

Distributional Assumptions

Because MLE has different mathematical estimation than OLS, MLE has 
some different assumptions than OLS. OLS regression is a parametric tech-
nique, meaning that it requires assumptions about the distribution of the 
data in order to be effective (these are discussed in most regression texts, 
but a particularly good reference is Cohen et al., 2002; see also Osborne & 
Waters, 2002). Commonly used statistical tests such as ANOVA and OLS 
regression assume that the data come from populations that are normally 
distributed or that have normal distributions of residuals (errors). In con-
trast, because of the different estimation procedures, logistic regression is a 
nonparametric technique, meaning it does not require any particular dis-
tributional assumptions.

Linearity of the Relationship

Another assumption of OLS regression is often referred to as the 
“assumption of linearity.” The general assumption is that the correct form 
of the relationship is being modeled, but in the case of OLS regression and 
many other analyses, the assumption is that there is a linear relationship 
between the DV and the IV. A similar generalization to planes and hyper-
dimensional relationships is in effect for multiple regression with 2 or 
more IVs, but thinking too deeply about hyperdimensional generalizations 
of linearity gives me a bit of a headache, so I tend to stick to the 2- or 
3-dimensional examples. Interestingly, I have often found relationships 
that are curvilinear in nature, not only in the social sciences but also in 
health sciences. Immediate examples that come to mind can include the 
relationship between arousal (i.e., stress) and performance (Loftus, Loftus, 
& Ketcham, 1992; Sullivan & Bhagat, 1992; Yegiyan & Lang, 2010),8 student 
achievement growth curves (Francis, Schatschneider, & Carlson, 2000; 
Rescorla & Rosenthal, 2004), grade point average and employment in high 
school students (Quirk, Keith, & Quirk, 2001), dose-response relationships 

8This is often attributed to Yerkes-Dodson (Yerkes & Dodson, 1908), or somewhat 
inaccurately referred to (sometimes by me personally) as an anxiety-performance 
curve. See Teigen (1994) for a historical overview of this large group of theories and 
studies.
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Chapter 1  A Conceptual Introduction to Bivariate Logistic Regression––11

(Davis & Svendsgaard, 1990), and age and life satisfaction (Mroczek & 
Spiro III, 2005).

For example, as Francis et al. (2000) showed, the general pattern  
for reaching achievement growth over time is curvilinear. In Figure 1.2,  
I present a growth curve modeled from their published data.

When this assumption of linearity is violated, two things happen. First, 
really interesting findings are overlooked, and second, OLS regression will 
underestimate (and mischaracterize) the true nature of the relationship. 
Fortunately, there are increasingly easy ways to incorporate tests for curvi-
linear effects as statistical software packages begin to implement curvilinear 
regression options.

Logistic regression is, by nature, nonlinear, as we will discuss in more 
detail in subsequent chapters. Specifically, the way that logistic regression 
converts a dichotomous or categorical variable to a dependent variable that 
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12––BEST PRACTICES IN LOGISTIC REGRESSION

can be predicted from other binary, categorical, or continuous variables 
involves a nonlinear transformation. For now, envision a dependent vari-
able that is an S-shaped curve representing the probability that an individ-
ual will be in one group or the other (like the one in Figure 1.3). Don’t 
worry about the details of how the DV is created in logistic regression for 
now—we will have fun exploring that more thoroughly later. I find it inter-
esting that although the basic character of logistic regression—the logit 
transformation—is curvilinear, there is a clear assumption of linearity as 
well. Specifically, there is an assumption that there is a linear relationship 
between IVs and the DV—that IVs are “linear on the logit.”9 Similar to when 
we create models in OLS regression, we can model relationships that are 

“nonlinear on the logit” easily, something we will explore in more depth in 
Chapter 7.

Note that “nonlinearity” includes the concept of interactions, where  
the effects of one variable depend on the effect of a second variable. For 

9This is also a great phrase to drop casually into conversations. Try it and watch 
your social capital climb!

Figure 1.3  Standard Logistic Sigmoid Function
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Chapter 1  A Conceptual Introduction to Bivariate Logistic Regression––13

example, there has been a lot of discussion about sex differences in math 
achievement test scores. This was a particular issue back in the 1980s when 
the National Center for Educational Statistics began their High School and 
Beyond study of high school students (information and data from HS&B 
available at http://nces.ed.gov/pubsearch/getpubcats.asp?sid=022). In the 
1980s, we knew that in general, girls underperformed on mathematics 
achievement tests compared with boys. As Figure 1.4 shows, that general 
pattern, however, is not the same in all types of schools. In this example,10 
we see that there is a trend for much larger schools to have larger math 
achievement gaps and for smaller schools to have smaller achievement gaps. 

10Note this is not a logistic regression example—we will explore interactions in 
logistic regression in Chapter 8. These results are from a quick hierarchical linear 
modeling (HLM) analysis with a continuous DV (HLM will be introduced and dis-
cussed as it relates to logistic regression in Chapter 13). 
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14––BEST PRACTICES IN LOGISTIC REGRESSION

In other words, the effect of student sex differs depending on the size of the 
school (and probably many other variables). Again, there are many reasons 
for this that we will not get into, but the conclusion is interesting—that con-
text matters. It is not simply a linear relationship, but rather a variety of 
relationships dependent upon the context the students find themselves in. 
Similarly, it is likely that when you look for them, you will find and model 
interaction effects when running logistic regressions. We will explore inter-
action effects in more detail in Chapter 8.

Perfect Measurement

It is almost a dirty little secret in statistical science that we assume perfect 
measurement yet rarely achieve it. In most statistical procedures, we assume 
we are measuring the variables of interest well, and to the extent that we are 
not, biases and misestimations can occur. In simple correlation and regres-
sion, the effect is usually that of underestimating the effects in question. Yet 
in multiple regression and more complex procedures, the effects can get 
unpredictable and chaotic. For example, if you are studying student achieve-
ment and attempting to control student socioeconomic status (SES), but your 
measure of SES is imperfect, then you are failing to fully control for the effect. 
This can lead other, related IVs to become overestimated if they are capturing 
variance that should have been removed by SES. I have dealt with this issue 
in more depth in other places and so will refer interested readers to those 
rather than recapitulating the arguments here (Nimon, Zientek, & Henson, 
2012; Osborne, 2003, 2008, 2012). Logistic regression also relies upon reliable 
measurement of variables, and so in that respect the two are similar.

Homoscedasticity (or Constant  
Variance of the Residuals)

ANOVA has the assumption of equal variance across groups, and OLS 
regression has a similar assumption—that the variance of the residuals (or 
the variance of data points around the regression line) is constant across 
the observed range. In other words, this means that if you plot the data 
points around the regression line (e.g., a ZPRED vs. ZRESID plot), you 
should see a relatively homogenous scattering of data points around the 
regression line at all points.

Again, because logistic regression is not a parametric procedure, there 
is no assumption of homoscedasticity or equality of variance. But there are 
some interesting assumptions relating to sparseness that seem similar to me. 
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Sparseness is a concept that can be understood by imagining lots of little 
boxes stacked together. Each box represents a combination of the DV and 
IV. For example, if you are looking at blood pressure and odds of having 
a stroke, you have boxes for each range of blood pressure representing 
both people who have and who have not had strokes. In sampling from 
the population, you want to make sure you have your boxes filled as best 
you can. “Sparse” data refers to having some of these boxes unfilled or not 
filled enough to allow the MLE estimation to effectively form estimates. This 
is an interesting difference between OLS and logistic regression and we will 
examine assumption testing in more detail in Chapter 4.

Independence of Observations

In most analyses, we assume that observations are independent unless 
we are specifically modeling nested data or repeated measures. Because 
much of our data in the world (especially in the social sciences, but also in 
many other sciences, such as health sciences) comes from organisms that 
form hierarchies or groups, this assumption may be more or less tenable. 
For example, researchers sampling individuals from existing health centers 
or students from schools or classrooms are sampling individuals who are 
already more similar in many respects than individuals sampled at random 
from the entire population. This violates the assumption of independence 
of observation and may bias the results. For a brief primer on this concept, 
and the issues that can arise, you can refer to Osborne (2000) or refer to 
Chapter 13, where we discuss HLM applied to logistic regression.

SIMILARITIES BETWEEN OLS  
 REGRESSION AND LOGISTIC REGRESSION 

Summarizing the Overall Model

One of the first things many researchers look at in OLS regression is 
the overall model fit, usually represented with a multiple R, with associated 
significance test, and R2, the overall amount of variance accounted for. This 
is an important statistic and represents goodness of the model. Logistic 
regression does not have an exact analogue to R2. Instead we have the 
concept of deviance,11 which represents lack of fit or deviance from  

11Which is much less exciting in discussing logistic regression than in discussing 
social or behavioral deviance. Sorry. 
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the observed data. In logistic regression, we can start with deviance for the 
null model, or the overall amount of deviance—essentially the overall 
amount of deviance that can potentially exist in the dependent variable. 
Then we have model deviance, the deviance that remains once predictor 
variables have been added to the model. Deviance is reduced as significant 
predictors are added, and there are statistical tests for this reduction similar 
to that of ΔR2, usually in the form of a χ2 that is the difference between the 
null or baseline model and the final model, with degrees of freedom that 
represent the number of parameters estimated that changed between  
the two models. This test is called the likelihood ratio test (Hosmer &  
Lemeshow, 2000).

 
Deviance = − 2(ln

likelihood of fitted model

likelihood of satuurated model
)
 

Eq. 1.1.

So conceptually, there are ways to assess the overall model in logistic 
regression, but the method differs significantly in terms of what deviances 
are and how they are thought of. If you are familiar with other types of 
analyses that use maximum likelihood, you may have seen −2 log likeli-
hood used similarly. Deviances and −2 log likelihoods are conceptually 
identical.

  WHAT IS DISCRIMINANT FUNCTION ANALYSIS AND  
HOW IS LOGISTIC REGRESSION SUPERIOR/DIFFERENT?

I briefly discussed the idea of performing an OLS regression analysis with 
the binary DV. This analysis is referred to as the linear probability model, 
and to recap, there are multiple issues with this approach. For example, 
predicted probabilities can exceed the 0.00 to 1.00 range that is concep-
tually valid; the residuals are highly heteroscedastic and not normally 
distributed. Two-group discriminant analysis was developed early in the 
20th century (Fisher, 1936). In practice, this procedure was often used to 
classify individuals based on certain predictor variables to explore 
whether a researcher could account for, say, a clinician’s diagnosis. In 
discriminant analysis, a set of predictors is used to generate a prediction 
equation, called the linear discriminant function, with each predictor 
weighted with a coefficient (just as in OLS regression), and predicted 
scores. While somewhat intuitive, discriminant analysis is mathematically 
identical to the linear probability model (Cohen et al., 2002) and  
thus carries the same liabilities. Thus, it is considered an anachronistic 
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procedure and does not currently represent a best practice. Instead, 
researchers should use logistic regression, which is considered the suc-
cessor to this procedure.

SUMMARY

Logistic regression is a relative newcomer to the statistical toolbox, particu-
larly in the social sciences, but it is currently considered the best practice 
when dealing with outcomes that are dichotomous or categorical in nature. 
Through the course of this book we will explore all the various ways logistic 
regression is similar to, and different from, OLS regression. If you are familiar 
with OLS regression, you will find logistic regression a simple-to-understand 
cousin. The technical details “under the hood” are very different, and there 
are some interesting and fun nuances that an expert logistic regression user 
needs to master (but in fairness, there are many interesting and fun nuances 
that expert OLS regression users need to master as well). We will take  
each topic one at a time, and by the end it is my hope that you will appre-
ciate the beauty and power of this procedure, ready to use it according to 
evidence-based best practices.
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