You are here

Visible Learning for Mathematics, Grades K-12

Visible Learning for Mathematics, Grades K-12
What Works Best to Optimize Student Learning

Foreword by Diane J. Briars, NCTM Past-President, Corwin Official VLP Collection badge

September 2016 | 304 pages | Corwin
Selected as the Michigan Council of Teachers of Mathematics winter book club book!

Rich tasks, collaborative work, number talks, problem-based learning, direct instruction…with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school.

That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in “visible” learning because the 
effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students

Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: 

Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings.

Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency.

Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. 

To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.

List of Figures
List of Videos
About the Teachers Featured in the Videos
About the Authors
Chapter 1. Make Learning Visible in Mathematics
Forgetting the Past

What Makes for Good Instruction?

The Evidence Base


Effect Sizes

Noticing What Does and Does Not Work

Direct and Dialogic Approaches to Teaching and Learning

The Balance of Surface, Deep, and Transfer Learning

Surface Learning

Deep Learning

Transfer Learning

Surface, Deep, and Transfer Learning Working in Concert


Reflection and Discussion Questions

Chapter 2. Making Learning Visible Starts With Teacher Clarity
Learning Intentions for Mathematics

Student Ownership of Learning Intentions

Connect Learning Intentions to Prior Knowledge

Make Learning Intentions Inviting and Engaging

Language Learning Intentions and Mathematical Practices

Social Learning Intentions and Mathematical Practices

Reference the Learning Intentions Throughout a Lesson

Success Criteria for Mathematics

Success Criteria Are Crucial for Motivation

Getting Buy-In for Success Criteria



Reflection and Discussion Questions

Chapter 3. Mathematical Tasks and Talk That Guide Learning
Making Learning Visible Through Appropriate Mathematical Tasks

Exercises Versus Problems

Difficulty Versus Complexity

A Taxonomy of Tasks Based on Cognitive Demand

Making Learning Visible Through Mathematical Talk

Characteristics of Rich Classroom Discourse


Reflection and Discussion Questions

Chapter 4. Surface Mathematics Learning Made Visible
The Nature of Surface Learning

Selecting Mathematical Tasks That Promote Surface Learning

Mathematical Talk That Guides Surface Learning

What Are Number Talks, and When Are They Appropriate?

What Is Guided Questioning, and When Is It Appropriate?

What Are Worked Examples, and When Are They Appropriate?

What Is Direct Instruction, and When Is It Appropriate?

Mathematical Talk and Metacognition

Strategic Use of Vocabulary Instruction

Word Walls

Graphic Organizers

Strategic Use of Manipulatives for Surface Learning

Strategic Use of Spaced Practice With Feedback

Strategic Use of Mnemonics


Reflection and Discussion Questions

Chapter 5. Deep Mathematics Learning Made Visible
The Nature of Deep Learning

Selecting Mathematical Tasks That Promote Deep Learning

Mathematical Talk That Guides Deep Learning

Accountable Talk

Supports for Accountable Talk

Teach Your Students the Norms of Class Discussion

Mathematical Thinking in Whole Class and Small Group Discourse

Small Group Collaboration and Discussion Strategies

When Is Collaboration Appropriate?

Grouping Students Strategically

What Does Accountable Talk Look and Sound Like in Small Groups?

Supports for Collaborative Learning

Supports for Individual Accountability

Whole Class Collaboration and Discourse Strategies

When Is Whole Class Discourse Appropriate?

What Does Accountable Talk Look and Sound Like in Whole Class Discourse?

Supports for Whole Class Discourse

Using Multiple Representations to Promote Deep Learning

Strategic Use of Manipulatives for Deep Learning


Reflection and Discussion Questions

Chapter 6. Making Mathematics Learning Visible Through Transfer Learning
The Nature of Transfer Learning

Types of Transfer: Near and Far

The Paths for Transfer: Low-Road Hugging and High-Road Bridging

Selecting Mathematical Tasks That Promote Transfer Learning

Conditions Necessary for Transfer Learning

Metacognition Promotes Transfer Learning



Mathematical Talk That Promotes Transfer Learning

Helping Students Connect Mathematical Understandings

Peer Tutoring in Mathematics

Connected Learning

Helping Students Transform Mathematical Understandings

Problem-Solving Teaching

Reciprocal Teaching


Reflection and Discussion Questions

Chapter 7. Assessment, Feedback, and Meeting the Needs of All Learners
Assessing Learning and Providing Feedback

Formative Evaluation Embedded in Instruction

Summative Evaluation

Meeting Individual Needs Through Differentiation

Classroom Structures for Differentiation

Adjusting Instruction to Differentiate


Learning From What Doesn’t Work

Grade-Level Retention

Ability Grouping

Matching Learning Styles With Instruction

Test Prep


Visible Mathematics Teaching and Visible Mathematics Learning


Reflection and Discussion Questions

Appendix A. Effect Sizes
Appendix B. Standards for Mathematical Practice
Appendix C. A Selection of International Mathematical Practice or Process Standards
Appendix D- Eight Effective Mathematics Teaching Practices
Appendix E. Websites to Help Make Mathematics Learning Visible

Evidence Based
Clear writing
Student response

Christopher Jones
Education Spec Ed Soc Wrk Dept, Longwood University
March 15, 2021

This gives a clear context and rationale for the 3 phase model introduced within the book. This is a valuable textbook.

Mr Drew Quayle
Faculty of Health , Social Care & Education, Anglia Ruskin University
August 19, 2019

This book is a 'must read' for all those interested in mathematics pedagogy.

This book, and the videos available on the internet, provide the best aggregation of educational research that I have ever seen. The information provided is up to date, and draws on the work theorist such as Dweck and Boaler. The book covers all grades (year groups), and includes a sample of useful vignettes.

Miss Syreeta Charles-Cole
School of Education, Theology & Leadership, St Mary's University, Twickenham
March 22, 2019

John Allan Hattie

John Hattie, Ph.D., is an award-winning education researcher and best-selling author with nearly 30 years of  experience examining what works best in student learning and achievement. His research, better known as Visible Learning, is a culmination of nearly 30 years synthesizing more than 1,700 meta-analyses comprising more than 100,000 studies involving over 300 million students around the world. He has presented and keynoted in over 350 international conferences and has received numerous recognitions for his contributions to education. His notable publications include Visible Learning, Visible Learning for Teachers, Visible... More About Author

Douglas Fisher

Douglas Fisher, Ph.D., is professor and chair of educational leadership at San Diego State University and a leader at Health Sciences High and Middle College. Previously, Doug was an early intervention teacher and elementary school educator. He is the recipient of an International Reading Association William S. Grey citation of merit and an Exemplary Leader award from the Conference on English Leadership of NCTE. He has published numerous articles on teaching and learning as well as books such as The Teacher Clarity Playbook, PLC+, Visible Learning for Literacy, Comprehension: The Skill, Will, and Thrill of Reading, How Tutoring Works, and... More About Author

Nancy Frey

Nancy Frey, Ph.D., is a Professor in Educational Leadership at San Diego State University and a member of the International Literacy Association’s Literacy Research Panel. Nancy has published in The Reading Teacher, Theory Into Practice, Reading Psychology, Early Childhood Education Journal, and Educational Leadership on research related to literacy, school leadership, and effective instruction. Current books include The Teaching Reading Playbook, Teaching Students to Drive Their Learning, Welcome to Teaching, and The PLC+ suite of books. In 2008 she was given the Early Career Achievement Award by the Literacy Research Association and is a... More About Author

Linda M. Gojak

Winner of the Presidential Award for Excellence in Science and Mathematics Teaching, Linda M. Gojak directed the Center for Mathematics and Science Education, Teaching, and Technology (CMSETT) at John Carroll University for 16 years. She has spent 28 years teaching elementary and middle school mathematics, and has served as the president of the National Council of Teachers of Mathematics (NCTM), the National Council of Supervisors of Mathematics (NCSM), and the Ohio Council of Teachers of Mathematics. More About Author

Sara Delano Moore

Sara Delano Moore is an independent mathematics education consultant at SDM Learning.  A fourth-generation educator, her work focuses on helping teachers and students understand mathematics as a coherent and connected discipline through the power of deep understanding and multiple representations for learning. Sara has worked as a classroom teacher of mathematics and science in the elementary and middle grades, a mathematics teacher educator, Director of the Center for Middle School Academic Achievement for the Commonwealth of Kentucky, and Director of Mathematics & Science at ETA hand2mind. Her journal articles appear in... More About Author

William Buckley Mellman

Also available as a South Asia Edition.

Purchasing options

Please select a format:

ISBN: 9781506362946