You are here

Applied Survey Sampling

Applied Survey Sampling

December 2014 | 272 pages | SAGE Publications, Inc

Written for students and researchers who wish to understand the conceptual and practical aspects of sampling, this book is designed to be accessible without requiring advanced statistical training. It covers a wide range of topics, from the basics of sampling to special topics such as sampling rare populations, sampling organizational populations, and sampling visitors to a place. Using cases and examples to illustrate sampling principles and procedures, the book thoroughly covers the fundamentals of modern survey sampling, and addresses recent changes in the survey environment such as declining response rates, the rise of Internet surveys, the need to accommodate cell phones in telephone surveys, and emerging uses of social media and big data.

Chapter 1: Introduction to Sampling
1.1 Introduction

1.2 A Brief History of Sampling

1.3 Sampling Concepts

1.3.1 Sources of Research Error

1.3.2 Probability versus Nonprobability Samples

1.4 Guidelines for Good Sampling

1.5 Chapter Summary and Overview of Book

Chapter 2: Defining and Framing the Population
2.1 Defining the Population

2.1.1 Defining Population Units

2.1.2 Setting Population Boundaries

2.2 Framing the Population

2.2.1 Obtaining a List

2.2.2 Problems With Lists

2.2.3 Coping With Omissions

2.2.4 Coping With Ineligibles

2.2.5 Coping With Duplications

2.2.6 Coping With Clustering

2.2.7 Framing Populations Without a List

2.3 Chapter Summary

Chapter 3: Drawing the Sample and Executing the
3.1 Drawing the Sample

3.1.1 Simple Random Sampling

3.1.2 Systematic Sampling

3.1.3 Physical Sampling

3.2 Executing the Research

3.2.1 Controlling Nonresponse Bias

3.2.2 Calculating Response Rates

3.3 Chapter summary

Chapter 4: Setting Sample Size
4.1 Sampling Error Illustrated

4.2 Sample Size Based on Confidence Intervals

4.2.1 Computational Examples

4.2.2 How to Estimate s or p

4.3 Sample Size Based on Hypothesis Testing Power

4.4 Sample Size Based on the Value of Information

4.4.1 Why Information Has Value

4.4.2 Factors Related to the Value of Information

4.4.3 Sample Size and the Value of Information

4.5 Informal Methods for Setting Sample Size

4.5.1 Using Previous or Typical Sample Sizes

4.5.2 Using the Magic Number

4.5.3 Anticipating Subgroup Analyses

4.5.4 Using Resource Limitations

4.6 Chapter Summary

Chapter 5: Stratified Sampling
5.1 When Should Stratified Samples Be Used?

5.1.1 The Strata Are of Direct Interest

5.1.2 Variances Differ Across Strata

5.1.3 Costs Differ Across Strata

5.1.4 Prior Information Differs Across Strata

5.2 Other Uses of Stratification

5.3 How to Draw a Stratified Sample

5.4 Chapter Summary

Chapter 6: Cluster Sampling
6.1 When Are Cluster Samples Appropriate?

6.1.1 Travel Costs

6.1.2 Fixed Costs

6.1.3 Listing Costs

6.1.4 Locating Special Populations

6.2 Increased Sample Variability as a Result of Clustering

6.2.1 Measuring Homogeneity Within Clusters

6.2.2 Design Effects From Clustering

6.3 Optimum Cluster Size

6.3.1 Typical Cluster Sizes

6.4 Defining Clusters

6.5 How to Draw a Cluster Sample

6.5.1 Drawing Clusters With Equal Probabilities

6.5.2 Drawing Clusters With Probabilities Proportionate to Size

6.5.3 Drawing Stratified Cluster Samples

6.6 Chapter Summary

Chapter 7: Estimating Population Characteristics From Samples
7.1 Weighting Sample Data

7.1.1 Should Data Be Weighted?

7.2 Using Models to Guide Sampling and Estimation

7.2.1 Examples of Using Models

7.2.2 Using Models to Reduce the Variance of Estimates

7.2.3 Using Models to Cope With Violations of Probability Sampling Assumptions

7.2.4 Conclusions About the Use of Models

7.3 Measuring the Uncertainty of Estimates From Complex or Nonprobability Samples

7.4 Chapter Summary

Chapter 8: Sampling in Special Contexts
8.1 Sampling for Online Research

8.2 Sampling Visitors to a Place

8.2.1 Selecting Places for Intercept Research

8.2.2 Sampling Visitors Within Places

8.3 Sampling Rare Populations

8.3.1 Telephone Cluster Sampling

8.3.2 Disproportionate Stratified Sampling

8.3.3 Network Sampling

8.3.4 Dual-Frame Sampling

8.3.5 Location Sampling

8.3.6 Online Data Collection for Rare Groups

8.4 Sampling Organizational Populations

8.5 Sampling Groups Such as Influence Groups or Elites

8.6 Panel Sampling

8.6.1 Initial Nonresponse in Panels

8.6.2 Differential Mortality Over Time

8.6.3 Panel Aging

8.6.4 Implications for Panel Sampling

8.6.5 Other Issues in Panel Sampling

8.7 Sampling in International Contexts

8.8 Big Data and Survey Sampling

8.8.1 Big Data as a Survey Complement

8.8.2 Big Data as a Survey Replacement

8.9 Incorporating Smartphones, Social Media, and Technological Changes

8.9.1 Smartphones and Surveys

8.9.2 Social Media and Surveys

8.9.3 A General Framework for Incorporating New Technologies

8.10 Chapter Summary

Chapter 9: Evaluating Samples
9.1 The Sample Report

9.2 How Good Must the Sample Be?

9.2.1 Concepts of Representation and Error

9.2.2 Requirements for Sample Quality Across Research Contexts

9.3 Chapter Summary



Student Study Site
Our Student Study Site at is completely open-access and offers meaningful web links 
and answers to exercises to extend and reinforce learning.

Was a good resource for DBA students conducting research.

Dr Mike Guerra
Business Admin Economics Prog, Lincoln University
January 27, 2016

Sample Materials & Chapters

Chapter 2

Chapter 8

Edward Blair

Edward Blair is the Michael J. Cemo professor of marketing and entrepreneurship and chair of the Department of Marketing and Entrepreneurship in the Bauer College of Business at the University of Houston. He has been chair of the American Statistical Association Committee on Energy Statistics, which advises the U.S. Energy Information Administration on statistical matters, and previously served on the U.S. Census Bureau Advisory Committee. He has been a National Science Foundation panelist, national conference chair for the American Marketing Association, editorial board member for Journal of Marketing Research, Journal of the Academy of... More About Author

Johnny Blair

Johnny Blair is an independent consultant. Previously, he was a principal scientist and senior survey methodologist at Abt Associates Inc., where he directed the Cognitive Testing Laboratory. He has conducted research on sampling rare populations, measurement error in proxy reporting, and cognitive interviewing for pretesting survey instruments. He has been a member of the Design and Analysis Committee, which provides statistical advice for the National Assessment of Educational Progress (NAEP), often referred to as The Nation’s Report Card. He has served on National Research Council panels to assess major government-sponsored surveys. His... More About Author

Purchasing options

Please select a format:

ISBN: 9781483334332

SAGE Research Methods is a research methods tool created to help researchers, faculty and students with their research projects. SAGE Research Methods links over 175,000 pages of SAGE’s renowned book, journal and reference content with truly advanced search and discovery tools. Researchers can explore methods concepts to help them design research projects, understand particular methods or identify a new method, conduct their research, and write up their findings. Since SAGE Research Methods focuses on methodology rather than disciplines, it can be used across the social sciences, health sciences, and more.